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ABSTRACT

A salmon fishery management model utilizing statistical decision theory has been constructed. The
model provides for the successive acquisition of data that can be used to formulate and maintain an
optimum management strategy. The Bayes risk is defined as the expected economic loss resulting from
a set of fishery management decisions and the criterion of optimality is taken to be the strategy that
minimizes the Bayes risk. Specific 'functional forms are assumed where necessary in order to obtain a
closed form expression for the Bayes risk. The Bayes risk, in units of numbers of fish, can then be
computed for any particular sequence of fishery management decisions.

This paper represents a continuation of an earlier
effort (Lord 1973) in which statistical decision
theory was applied to the data acquisition and
management of a salmon fishery. The crucial
feature was not that the species considered was
salmon but that the assumed fishery was both
dynamic and subject to errors in the population
estimation. The population is assumed to be sub­
ject to continuing assessment, however, so that as
the season progresses it is possible to make re­
peatedly more refined estimates of the true state
of nature. The management strategy may thus be
modified successively to reflect the additional data
as they become available.

The development was quite abstract and pre­
sented only the basic theory in a relatively general
way. The present paper represents an inter­
mediate situation in which the theory is applied to
a specific model constructed to represent such a
fishery. The principal features of this model are: 1)
a Ricker spawner-return relationship, 2) simulated
sampling for population estimation purposes, and
3) an economic loss function based on maximum
substained yield (MSY).

A limitation of the present model is that it is
constructed in such a manner that a closed analytic
form is obtained without recourse to Monte Carlo
or other approximate methods of analysis. In other
words, the Bayes risk may be computed exactly
upon the specification of well defined sets of
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parameters. The imposition of such analytical
requirements constrains the choice of functions to
those that are mathematically tractable. An­
ticipating the final results, Equations (18) and (20),
I feel that about the maximum degree of gen­
erality has been retained consistent with analyt­
ical tractability. It is likely that models possess­
ing a greater degree of fidelity to the actual fishery
situations will require the use of Monte Carlo
methods as Mathews (1966) used in his simulation
of the cannery portion of the Bristol Bay fishery.

ANALYSIS

The notation used in Lord (1973), with only
minor ch;mges, will be retained here. In this
section I will discuss the Bayes risk for a particular
fisheries model based on the Ricker spawner­
return relation. The criterion of optimality will be
taken as MSY. Economic losses will accrue as the
actual management strategies depart from the
optimum. Generally these losses will be reflected
in either a decreased present catch or in dimin­
ished future returns due to prior overfishing.

A loss function proportional to the difference
between the optimum catch and the actual catch,
on an MSY basis, will be assumed. This is a simple
and intuitively reasonable concept but, nonethe­
less, a unique formulation of the loss function from
this criterion is no simple task. The difficulty arises
from the use of a spawner-return relation which
reflects the biological fact that the present state of
the system is necessarily the result of past actions
and, similarly, that future conditions will depend
on present actions. In the case of sockeye salmon,
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If we attempt to maximize X tot with respect to the
yearly escapements E1 , E2 , ••• E,..*, it turns out
that as n* ~ 00: a) a steady state solution exists

an added complication is provided by the fact that
the run in any year represents the progeny of
several spawning groups.

The Ricker spawner-return relation, for a single
spawning group, is given by

The return as given by Equation (1) or Equation
(2) is a deterministic function of the parameters.
In actual practice, however, the return, from the
biologist's point of view, is a random variable in
which case some additive or multiplicative error
term must be appenqed to Equation (1). Thus, at
an appropriate point in the analysis, the return
will be assumed to be a random variable whose
expected value is given by Equation (1).

Let x;. be the catch in year n. Then
Ii

Xn = a ~ PkEn_ke-bE,-. -En.
k = 1

Let X tot be the total catch over some fixed but
otherwise arbitrary number, say n *, of fishing
seasons. Then

and b) the optimum steady state escapement, Eo,
is that which maximizes the function (aEe- bE - E).

Let LII denote the economic loss in any year nand
define L" as the difference between the optimum
catch, XOPl> and the actual catch Xacl> Le.,
L II = X oPt - X act' From Equation (3) we obtain

L II.II + Ii = (K + l)(aEoe- bE,,_ Eo)

_"±Ta f AEJ _k e- bf:, .• - EJ (5)
j =II k = 1

Ln = (aEoe- bE" -E~

-(a± PkEII_ke-bE'-'-E~. (4)
k = 1

LII + £" + 1 = 2( aEoe- bE,,_ Eo)
Ii

-(ak~1 PkE,,-k e- bf;,_,_ Ell)

Ii

-(a~ PkEII+I_ke-bf:,+I-,-EII +1).
k = 1

Eo is fixed and all of the escapements
(Ell _k}(k = 1 ... K) have already occurred thus
leaving only Ell at our disposal. L" is clearly
minimized by setting E,.. = 0 but since this would
eliminate a portion of the run in future years the
subsequent loss would be high indeed. Consider
now the combined loss for two successive years n
and (n + 1). Proceeding along the same lines that
led to Equation (4) we obtain

The loss given by Equation (5) depends not only on
past and present escapements but on the future
values E,.. + l' E" + 2, ... E,.. + Ii as well. Thus, when
formulating a policy for an'y particular year one
must take into account future policies also. From a
mathematical point of view what we have emerg­
ing here is another dynamic program, Le., the
optimum year-to-year allocation as well as the
within-year allocation is in the form of a dynamic
program. This is too great an anlytical burden to

If this is treated as a function of the single
variable E,.., an optimum value can be obtained.
However, this loss also depends on E" + 1 which has
not yet occurred. Let us extend this process
through year (n + K), which is a convenient stop­
ping point since it represents the completion of a
cycle starting at year n. The total loss over this
period is given by

(1)

(3)

where R,. is the return in year n resulting from an
escapement EII..Jk k years prior, e is the base of
natural logarithms, and a and b are parameters
assumed unique for any river system or spawning
group. We may generalize Equation (1) to the case
of multiple spawning groups to give

Ii

R,. = ~ a"EII_ke- bE,-. (2)
k =1

where the relevant spawning occurs over the years
(n - 1) through (n - K). In Equation (2) the
coefficients {a,,} now reflect not only the magni­
tude of the run, as in Equation (1), but the
proportion of the run arising from each spawning
group. Specifically we can write a" = aPk where a
is the parameter in Equation (1) and Pk is propor­
tion of the run in year n arising from spawners in

Ii

year (n - k). We have the condition ~ Pk = 1
Ii k = 1

from which it follows that ~ a" = a. r.
k = 1
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bear. However, we can invoke the "Principle of
Optimality" (Bellman 1957:83) to specify that
En +i = Eo for allj d, i.e., all future escapements
are assumed to be the optimum MSY escapement.
This is a reasonable assumption since the principle
of optimality states that an optimal policy is one
which, given the present state of the system,
establishes and maintains an optimal policy for all
future time periods. Since Eo represents such an
optimum steady state escapement it follows that
E" +i = Eo for future optimality. In this case
Equation (5) takes the form

Ln.n +K = L(En} = (K + l)(aEoe - b~ - Eo)

on Eo and past escapements only}. (6)

From Equation (6) it appears that the optimiza­
tion will be over a total of (K + I) seasons. This is
not actually the case sinee, as noted above, the
constraint E" +i = Eo has been imposed and the
analytical procedures used in year n will be ap­
plicable in year (n + I), etc. Note also the intu­
itively reasonable result that the loss given by
Equation (6) is minimized by setting E" = Eo, the
optimum MSY escapement.

The analysis thus far has assumed that all
quantities are deterministic. Random variables
will now be introduced to simulate the situation
actually existing in salmon fishery assessment and
management. Let N" denote the run size resulting
from the (known) escapements (E,. _iJ(j = 1, ...
K) and let N" be a random variable which, for
definiteness, will be assumed to have the two­
parameter gamma density

where r denotes a gamma function. The pa­
rameters (ao, 130) are subscripted to denote that
they are applicable prior to the start of the run and
fis subscripted by one to denote that it is applica­
ble to the first fishing period. The quantity Yo is a
symbolic conditioning variable denoting the pre­
season information that is available for the
specification of (ao, 130). Anticipating the dynamic
nature of the fishery and its management the
probability density of Nn will be conditioned
successively to reflect the data obtained after the
start of the run.

We assume now that the expected value, shown
as E[Nn ] is that given by the Ricker relation, Le.,

Ii

Rn = E[Nn] = a ~ PkEn_ke-bE.... (8)
k = 1

The variance of N" may be estimated from his­
torical data, e.g., smolt outmigrations, high seas
catches, etc. Knowledge of the mean and variance
is sufficient to determine the parameters (ao, 130).

At this point it might be well to justify, or at
least explain, the assumption of a gamma density
for Nn • Clearly, one cannot obtain Equation (7) on
the basis of biological arguments. On the other
hand, a gamma density does not do particular
violence to one's intuition concerning the dis­
tribution of population sizes. In particular, Equa­
tion (7) confines Nn to positive values with scale
and location specified by (ao, 130). In salmon
population estimation, it is rare that parameters
beyond mean and variance are available from
whatever source. It is in this spirit that Equation
(7) is introduced. Further, the gamma distribution,
not coincidentally, has the added virtue that it is
an analytically convenient function. Similar ar­
guments will be used to justify some of the func­
tions to be introduced subsequently.

For the remainder of the analysis, only events in
year n will be considered so that the subscript may
be omitted from Nn • The fishing season is assumed
to consist of m nonoverlapping time periods dur­
ing each of which a management decision, 0, must
be made. Let {qJ (i = 1, ... m) be an arbitrary
sequence of decisions where each of the & is a
member of some finite set of possible management
decisions.3 Assume now that during the ith period
a fraction Pi of the total run enters the fishery. The
set {Pi J(i = 1, ... m}, which is assumed to be
known, may be obtained from such sources as the
almanac prepared by Royce (1965). The (Pi J must
obviously satisfy the condition

m

~ Pi = 1.
i = 1

Corresponding to any actual realization of the
run, N, there exists some unique set of optimum
catch-escapement allocations {'lji} (i = 1, '" m).
Rothschild and Balsiger (1971) used linear pro-

3A typical set of management decisions consists of such actions
as opening or closing the fishery, the imposition of gear limita­
tions, waiting periods, etc.
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(14)

(10)

Substituting Equations (7) and (10) in Equation
(11) gives, after dividing common factors,

((PiN)U,
P(Yj = Yi IN) = e- (p,N --y;;-

where Yi = 0, 1, .... Equation (10) and Bayes
theorem may be utilized to modify or update
Equation (7) to reflect the additional information
that is assumed to have become available. Assume
that the system is now at the start of the second
stage and that the sample YI is now available.
Bayes theorem gives

ically upon the specification of an appropriate
sampling distribution for the <Yi) (i = 1, 2, ...
m - 1). Ym is irrelevant since it is obtained after the
final decision Om will have been made.

Assume that during each stage of the run some
fixed fraction (of the total number of fish entering
the fishery is vulnerable to sampling. For example,
if the sampling is done by gill nets ( may be
determined from knowledge of the length, the
time of soak, and the efficiency of the net. With
such a sampling scheme, it is reasonable to assume
that the samples Y1> Y2, ... Yk _ I will have in­
dependent Poisson densities with parameters A1>
1\2' ... Ak -I where i\ = (PiN, i.e., (PiN is the
expected sample size for the ith period and

The integral in the denominator of Equation (12)
is a standard form expressible in terms of gamma
functions which gives

P~' a -I _ (j N
f2(NIYo'YI) = -- N I e I (13)

[(at)

where al = ao + YI and PI = Po + (PI' The updat­
ed probability density for N given by Equation
(13) is, like the prior density given by Equation (7),
a gamma density but with modified parameters al
and PI' The process by which Equation (13) was
obtained may be repeated indefinitely to give

fic(NI Yo. YI' ... Yk - d

LeHfli} (i= 1, ... m) be the actual allocations
where each ili will be assumed to be a random
function of the management decision 0; taken
during the ith period. It will be assumed that the
<ilj) (i = 1, .. .m) have independent beta distribu­
tions where the beta parameters ("i, I-'i') are
uniquely determined by the management decision
0; that is taken during period i. Thus we have

where

m

g(ilL il2. ... ilm 101> 02, ... 0".) = II gi (ili 1«\) (9a)
i = I

gramming to determine an optimum set of such
allocations. Such fine-scale is not practical here so
that the individual 'IIi are irrelevant here except
that they must satisfy the condition

m

N ~ Pi 'IIi = Eo·
; = I

4The conditioning of f1 by 6 only is probably an
oversimplification. There is evidence to indicate that ~ also
depends on the number of fish that enter the fishery during ~ny
fishing period.

This is a reasonable probability density to assume
since it confines ili to the interval (0,1) and the
parameter choice permits, within appropriate
limits, the specification of the mean and variance4

of TJi'
Return now to the central feature of the analy-

sis which is to take into account the dynamics of
the fishery. Equation (7) is the probability density
of N appropriate for the first period of the fishery
during which only preseason conditioning infor­
mation, denoted symbolically by Yo, is available.
Assume now that, during the first and subsequent
time periods, additional population data, Y1> Y2, ...
become successively available. This data may then
be used to condition the probability density of N,
hopefully in such a manner that our knowledge of
the true value of N, as measured by its variance,
improves as more data are gathered. At each stage
of the fishing season we compute the Bayes risk
with respect to the then current probability den­
sity of N and adopt a strategy that takes into
account all available data and all previous man­
agement decision. This will be formalized analyt-
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as the posterior density for N at the start of the
kth fishing period. The parameters are given by
ak _ 1 = ao + Yl + Y2 + ... + Yk - 1 and 13k _ 1 =
130 + €(P2 + P2 + ... + Pk-d. At this point it is
appropriate to observe that, as time progresses
and additional population data are obtained, the
distribution of N, as specified by the parameters
ak -1 and 13k -1, will more and more reflect the
in-season sampling data with a corresponding
decrease in the relevance of the preseason infor­
mation implied by ao and 130'

The probability densities given by Equations
(7), (10), and (14) enjoy a peculiar relationship in
which the posterior density of N, given by Equa­
tion (14), is from the same family as the prior
density, Equation (7), for the particular sampling
distribution given by Equation (10). Such pairs of
densities are called conjugate pairs (DeGroot
1970:159-166). It is obvious that one cannot, in
general, be so fortunate as to have parameter and
sampling distributions that form a conjugate pair
as in the model assumed'here. However, DeGroot
does outline some somewhat ad hoc procedures for
constructing reasonable posterior probability
densities.

All of the quantities and distributions necessary
to compute the average or expected loss, i.e., the
Bayes risk, are now available. The expression for
the Bayes risk, to be evaluated at the start of the
kth fishing period, may be written formally as

where gi, L(E,.), andik are given by Equations (9),
(6), and (14) respectively. Notice that the Bayes
risk as given by Equation (15) is a function not
only of the decisions already made, 81 , 82 , •••

15k _ 1 and the decision about to be made, 15k , but of
all future decisions 15k +I' '" 8m as well. This
dependence on all decisions, past, present, and
future, reflects the assumption that the loss is a
function primarily of the final state of the system,
Le., to a first approximation one cannot ascribe
values to individual units of escapement during
the season but only to the final total escapement.
This presents no particular analytical difficulties
since any particular sequence of optimum future
decisions 8k +1, ... 8m is certainly subject to revi-

sion as time passes and additional information
becomes available.

Substituting Equations (6), (9), and (14) in
Equation (15) gives

Rd81 ,82,.,. 8",1 Yo, Yl' '" Yk-I)

(/3, )" 00 1 1= k-l '-liN"'-I-le-/3'_INdN!d~I...1.d~m
f(ak _ 1) 0 0 0

IL' (Eo, En -1, ••• E,. -K) -(aE,.e- bE,_ E,.) }

m

. II f(p; + !J1) 'p, -1 (1- ·.)I'r 1 (16)
; =1 f(p; )f(P;) 'rJ) 'Il;

where L'(Eo, E,. _1, E,. _2, ••• E,. -K) denotes that
portion of the loss function that does not depend
on E,.. Thus L' is a fixed quantity and may be
removed from the integral signs. This leaves only
probability densities, which must integrate out to
unity, so that

m

rN°o" -1 -fJ Ndurdl. rd1 • ( -bN~ P,", I)NJo. •-'e' -I .J.VJo( 1]1 .• .1
0

' 11m ae ,= 1 -

m m f(p + )
~ II;!J1· 'r I (1 • )"- I

1-f'1 Pi~i • ;=1 f(Pi) f (!J1) 1]; -1];' (17)

where the escapement E,. has been expressed as

m

En = N~ Pi~i'
i = 1

The integrations in Equation (17) cannot be
performed as expressed. If the order of the inte­
grations is reversed, the integration with respect
to N may be performed but the remaining in­
tegrations over ~1' ~2' ••• ~m will be virtually
impossible. However, if the exponential term

exp (-bNi~1 PifJ;) is expanded in its Maclaurin

series and if the resulting multinomials of the

1( III .)"form nY' -b~~l PiT/; (n = 0, 1, , ..) are ex-

panded according to the multinomial theorem, the
integrand in Equation (17) will be in a completely
factored form. As a result of this factorization, the
integrals take the form of various moments about
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III

where G = :.~ 'Yi'
-j = I

Equations (18) and (20) are somewhat in­
timidating, particularly if one were to attempt to
infer the qualitative behavior of the system as the
parameters descriptive of the fishery and its
management are varied. Indeed, Equations (18)
and (20) are virtually useless for this purpose with
the exception of the determination of certain

CPUE. In so doing one can then introduce tempo­
ral variability in the set {Pi} (i = 1, ... m) and in
evaluating the Bayes risk an additional expecta­
tion with respect to the density of these random
variables must be taken.

An almost ideal probability density to describe
the run fractions is the Dirichlet density defined
by

h( ) f(YI+Y2+ .. ·+Ym)
PI' P2,·· ·Pm =

f(Yl)f(Y2) f(Ym)

P Y,-I P Y,-I Pm ym-I (19)
! 2

where Pi"O for all i. As written this density is
singular since the variates must satisfy the side

m

condition ~ Pi = 1. The choice of the pa-
; = I

rameters (YI' Y2, ... Ym) then permits the
specification of any m of the means, variances, and
covari"ances of the {Pi} (i = 1, ... m). If Equation
(19) is substituted in Equation (16) the integra­
tions with respect to N and (~I' ~2' ... ~) may be
done as before. The remaining integrals over (PI'
P2, •.• Pm) are all Dirichlet integrals (Wilks
1962:177, et seq.) for which the values are readily
determined. The resulting Bayes risk for this case
may then be shown to be given by

Rd8!.82• ••• 8m ICPUE)

(20)

f(Vi + k;)f(v; + p;)f(y; + k;)

f(v;) f(v; + p; + k;) f(Yi)i = 1

~ (Yj + k,)(Vj + k,)
j=! vj+/-'i+kj

III

·rr

the origin. These integrals are all standard forms
(c.f., Bierens de Haan 1939). The reader will be
spared the details of this reduction and the ensu­
ing integrations. The final expression for the
Bayes risk is

Rk (81. 82, ••• 8m IYO'Y1' ... Yk -1)

ak_1 ~ IVj
= £'(&'&'-1>'" E,. -K) + -a- £.J

fJk - I i =1 Vj + Jl;
n

__a_ }: (__b_) f(ak -1 + n -1)

13k - 1 n = 0 13k - 1 n! f(ak - 1)

~ f n J~ Pi(Vj + "')
k,= 0 \k l k 2 ••• km j = I Vi + Pi + '"

::Ek,=n

.IT f( Vj + JLi) f(Vj + k,) p/; (18)
j = 1 f(Vj) f(~ + JLi + k,)

where ( k l k2 ~ •• k".) denotes a multinomial
coefficient.

A slightly different form for the risk may be
obtained under an alternate set of assumptions.
Considerable emphasis has heretofore been placed
on the conjugacy of the gamma-Poisson families
of distributions. The gamma-Poisson assumption
is a reasonable one and the resulting conjugacy
lends a certain elegance. However, this line of
analysis results in posterior gamma parameters
(ak' f3d that, among other things, depend on the
run fractions {Pi) (i = 1, ... k). This parameter
dependence on the run fractions virtually pre­
cludes treating the set {Pi} (i = 1, ... k) as any­
thing but fixed quantities; i.e., once a variable
becomes the argument of a gamma function one
has usually arrived at an analytical dead end. In
actual practice, however, the quantities {Pi} (i = 1,
.. , m) are random variables since there may be
considerable year-to-year variation in the time
profile of the run. Such temporal variation may be
of considerable importance in Bristol Bay because
of the large magnitude of the run and its short
duration.

It has been suggested (0. A. Mathisen, pers.
commun. and others) that the probability density
of N is most appropriately conditional upon the
catch-per-unit-effort (CPUE) observed during the
course of the run. In so doing one can remove the
explicit dependence of (ak' 13k) on {Pi} (i = 1, ... k).
An implicit dependence remains, however, since
the CPUE will be a function of the run fractions.
One can formally bypass this dependence, how­
ever, by relating the density of N directly to the
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limiting behavior as the appropriate parameters
assume their extreme values. However, Equations
(18) and (20) do have the virtue that, in closed
form, the most crucial features of the fishery
dynamics and statistics are accommodated in a
quantitative and, hopefully, reasonably accurate
fashion.

A NUMERICAL EXAMPLE

The foregoing mathematical model was applied
to the simulated management of the Wood River
system of Bristol Bay. It should be emphasized at
the outset, however, that the assumptions, meth­
ods, and results presented here should in no way be
construed as representing a management scheme
preferable to those currently in use. The Wood
River was chosen simply because, based on Math­
ews' (1966) data, it seemed to follow the Ricker
spawner-return curve reasonably well.

In the example considered here, the model was
limited to a fishing season of five time periods
during each of which a choice of two management
decisions was possible. This limitation was neces­
sary to avoid inordinately lengthy calculations.
Ricker parameter values of a = 4.077 and b =
0.8 x lQ-6, which were used by Mathews, were
used here. The return was assumed to consist of
only the progeny of a single spawning group K
years prior where K is arbitrary, Le.,

i = K
i ::F K

All prior escapements were assumed to be the
optimum escapement Eo so that the loss function
given by Equation (5) becomes

L,. = (aEoe- bE. - Eo) - (aEn e- bE" - En).

For the above values of the Ricker parameters,
the MSY escapement is given by Eo = 709,000.
The expected value and standard deviation of a
[(ao, Po) variate are given by ao/Po and ao'h/Po,
respectively. In terms of the Ricker parameters,
the expected run size is given by aEo exp(- bEo)
which determines the ratio ao/Po = 1.64 X i06 • An
initial (i.e., preseason) standard deviation of
one-half the expected run size was assumed. In
terms of the gamma parameters this gives
ao'h /13o= ao/2Po or ao = 4.0 and Po = 2.44 x 1~.

The. t~o management strategies assumed were
complete closure (option 2) and one level of open-

ing (option 1). In terms of the beta parameters,
closure is simulated merely by setting 11-2 = 0 with
an arbitrary positive value for 112' During fishery
opening it was assumed that an average of 80% of
the available fish are caught with a standard
deviation of 0.25. This gives (1111 Ill) = (0.312, 1.248)
as the appropriate beta parameters. The set of run
fractions {Pi} (i = 1, ... 5) was determined from
the time profile proposed by Royce (1965). Values
of 0.156, 0.282, 0.348, 0.160, and 0.054, using five
equal length time intervals, were obtained. No
attempt was made to treat the run fractions as
random variables. All of the parameter values
were chosen to reflect reasonably well the known
behavior of the system.

The fishery dynamics were treated by two
distinct methods. The first method utilized the
gamma prior density for N with a Poisson sam­
pling density thus, through conjugacy, giving a
gamma posterior density. A gamma posterior
distribution was also assumed in the second
method but the posterior gamma parameters were
back-calculated after introducing prescribed
stage-to-stage trends in the population mean and
standard deviation.

The Bayes risk at each stage was computed for
each of the 25 = 32 total possible sequences of
decisions, past, present, and future; Le., no at­
tempt was made to formulate and solve the func­
tional equation associated with dynamic pro­
gramming.5 While relatively unsophisticated, this
approach does permit one to use hindsight to
determine, ex post facto, what an optimum
previous strategy would have been, given the
information currently available. In real life, of
course, "what might have been" is irrelevant in the
management of a dynamic system-one must
optimize the system as it exists in real time in
accordance with the principal of optimality, the
relevant homily for which might well be "what's
past is prologue:'

The numerical results are summarized in Tables
1 to 3. Tables 1 and 2 give the optimum strategies
and corresponding minimum Bayes risks for a
gamma prior run size distribution with simulated

'Subsequent to the submission of this paper, C. J. Walters
(1975) published a paper in which the ideas of dynamic pro­
gramming were applied to the optimum year to year man­
agement of a salmon fishery. His work is of considerable interest,
particularly since he managed to impose the principle of op­
timality and carry out the backward recursive scheme proposed
by Bellman (1957). It remains to be seen if this method can be
applied to the decision theoretic model presented here, but I am
no longer as pessimistic as I formerly was.
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TABLE I.-Optimum strategies and minimum Bayes risks for a five-period, two-decision fishery with
a sampling fraction ( = 1 x 10"""".

Time period (i) 1 2 3 4 5
Run fraction (PI) 0.156 0.282 0.348 0.160 0.054
Poisson parameter (A,) 256 462 570 262

y, = >..
Simulated samples (y,) 256 462 570 262
Optimum strategy open open close open open
Minimum Bayes risk 1.80 x 10' 3.49 X 10' 3.33 X 10' 3.29 X 10' 3.28 X 10'

y, = 2>"
Simulated samples (y,) 512 924 1,140 564
Optimum strategy open open open open close
Minimum Bayes risk 1.80 x 10' 1.89x 10' 1.70 x 10' 1.90 X 10' 1.90 x 10'

y, = ~>..

Simulated samples (y.) 128 231 285 131
Optimum strategy open close close close close
Minimum Bayes risk 1.80xl0' 6.90 x 103 3.35 X 103 2.48 X 103 2.29 X 103

TABLE 2.-0ptimum strategies and minimum Bayes risks for a five-period, two-decision fishery with
a sampling fraction ( = 1 x 10-<.

Time period (i) 1 2 3 4 5
Run fraction (PI) 0.156 0.282 0.348 0.160 0.054
Poisson parameter (>..) 26 46 57 26

YI = >..
Simulated samples (y.) 26 46 57 26
Optimum strategy open close open open open
Minimum Bayes risk 1.80 x 10' 5.86 X 10' 4.55 X 10' 4.19 X 10' 4.11xl0'

YI = 2>"
Simulated samples (y,) 52 92 114 52
Optimum strategy open open open open close
Minimum Bayes risk 1.80 X 10' 1.86x 10' 1.87 x 10' 1.89 X 10' 1.88 X 10'

y, = ~>..

Simulated samples (y,) 13 23 29 13
Optimum strategy open closa close close open
Minimum Bayes risk 1.80xl0' 4.14 x 10' 1.85xl0' 1.12xl0' 9.65 x 10'

TABLE 3.-0ptimum strategies and minimum Bayes risks for a five-period, two-decision fishery with
linear stage-ta-stage trends in the expected run size and the run size standard deviation with
preseason parameters ao = 4.0 and Po = 2.44 x 1<r".

Time period (il 1 2 3 4 5
Run fraction (p.) 0.156 0.282 0.348 0.160 0.054

Constant expected run size:
0, _I / fJI-I 1.64 X lOb 1.64 X lOb 1.64 X lOb 1.64 X lOb 1.64xl0·

v;;;-::7 / fJI - 1 8.20 X 10' 6.89 X 10' 5.57 X 10' 4.26x 10' 2.95 x 10'
Optimum strategy open close open open open
Minimum Bayes risk 1.80xl0' 1.41 x 10' 1.07xl0' 7.87 x 10' 5.74 X 10'

Increasing expected run size:
O;-t/p,-. 1.64xl0b 1.97xl07 2.30 X lOb 2.63 X lOb 2.95 X lOb

..;;;;:;0, - 1 8.20 X 10' 6.89 X 10' 5.57 X 10' 4.26 X 10' 2.95 X 10'
Optimum strategy open open open close open
Minimum Bayes risk 1.80xl0' 1.40 x 10' 1.26xl0' 1.43 x 10' 1.90 X 10'

Decreasing expected run size:
O;-I/fJ.-I 1.64xl0b 1.48 X lOb 1.31xl0b 1.15 X lOb 9.84 x 10'

va;-::;I fJI - 1 8.20 X 10' 6.89 X 10' 5.57 X 10' 4.26 X 10' 2.95 X 10'
Optimum strategy open open close close close
Minimum Bayes risk 1.80xl0' 1.52x 10' 1.25xl,lJ' 9.57 x 10' 6.68 X 10'

Poisson sampling. The sampling was intended to
simulate actual run sizes equal to, greater than, or
less than the preseason estimate of the run size,
aolPo. The Poisson sampling was done by brute
force in which sample values exactly equal to the
desired expected values were chosen. For example,
to simulate an actual run size twice that based on
the preseason parameters we choose Yi = 2~
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where l\; = (Pi (1.0/130 is the Poisson parameter for
the ith period obtained from the preseason pa­
rameters. The deterministic samples (which is
really a contradiction in terms) permit one to elicit
the response of the system to specified input
stimuli.

The Bayes risks are all in units of numbers of
fish. The optimum strategy is that strategy which
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minimizes the Bayes risk given that all prior
decisions were optimum for the time periods in
which they were made. In other words, the
"hindsight" feature was not utilized to "improve"
a past decision-once made any decision is retained
through all subsequent stages.

The mathematical machinery developed gen­
erally gives intuitively reasonable results.
Specifically, the tendency toward larger or smaller
run sizes results in optimum strategies that tend
successively toward more or fewer open periods
respectively. The Bayes risk generally, but not
always, decreases as the season progresses, largely
reflecting the decreasing variances in the es­
timates of the run size. Increases in the Bayes risk
can usually be attributed to past decisions that, in
the light of subsequent sampling, are no longer
optimum thus requiring corrective action.

CONCLUSIONS

The mathematical models assumed and
developed here for the objective management of a
typical salmon fishery, as previously noted, are
based on quite specific functional forms and thus
represent somewhat of an idealized situation.
However, these functions were chosen to reflect
the behavior of the system insofar as the knowl­
edge of such behavior is available. Indeed, the
acquisition of such detailed knowledge is an im­
portant area of current research and subsequent
refinements of the statistics will be possible as
more data are gathered.

Of more concern than the accuracy of the fine­
scale mathematical behavior of the system is the
appropriateness of the basic mathematical theory
upon which the models are built. I feel that statis­
tical decision theory is a most natural framework
on which to base an objective management model.
The nomenclature lends support to this view. For
example, the equivalence of a management deci­
sion and a statistical decision is obvious.6 The term
risk, in the economic if not the strict Bayesian
sense, is frequently used in discussions of fishery
management. Finally, Bayes theorem provides a
convenient and theoretically appropriate method
for accommodating the combined data acquisition
and dynamics of the fishery.

6This equivalence is not always evident even within decision
theory itself. For example, it requires a slight mental contortion
to treat statistical estimation as an application of decision theory
as the statisticians have done.

Advantage has been taken of some powerful
analytical tools to characterize salmon fishery
management. However, any enthusiasm for these
quite contemporary methods should be tempered
somewhat by consideration of some of the specific
practical difficulties likely to be encountered. One
of these, mentioned in Lord (1973), is the difficulty
associated with multistage dynamic processes.
While the fishery management problem under
discussion falls very naturally into a class of
stochastic dynamic programs it is not yet obvious
whether the functional equation arising from the
imposition of the principal of optimality can be
formulated or solved in a useful fashion. The
calculations done here were more of the brute
force variety in which all strategy combinations,
optimal or not, were considered. In other words,
the backward recurrence scheme central to dy­
namic programming was not used to reduce the
total number of possible strategies to be con­
sidered. In so doing, the "Curse of Dimensionali­
ty;' about which Bellman (1957:6) so aptly warned,
proved to be a limiting condition. To evaluate
completely the five-stage, two-decision fishery
considered here required from 10 to 15 min of
Control Data Corporation7 6400 central processor
time for each set of input parameters. This is not a
trivial numerical effort and should give one pause
when considering more elaborate models.

In conclusion I feel that advantage should be
taken of the appropriate analytical tools as they
are made available by the mathematicians or, at
the very least, such tools should be investigated.
However, the availability of such methods in no
way indicates their eventual practicality for any
specific problem. For this careful additional in­
vestigation is necessary.
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